Limit points of commuting squares
نویسندگان
چکیده
منابع مشابه
Institute for Mathematical Physics Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares
3 We consider commuting squares of nite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to nite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding subfa...
متن کاملCompact Kac Algebras and Commuting Squares
We consider commuting squares of finite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to finite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding sub...
متن کاملMatching Points with Squares
Given a class C of geometric objects and a point set P , a C-matching of P is a set M = {C1, . . . , Ck} ⊆ C of elements of C such that each Ci contains exactly two elements of P and each element of P lies in at most one Ci. If all of the elements of P belong to some Ci, M is called a perfect matching. If, in addition, all of the elements of M are pairwise disjoint, we say that this matching M ...
متن کاملCommuting Functions with No Common Fixed Points)
Introduction. Let/and g be continuous functions mapping the unit interval / into itself which commute under functional composition, that is, f(g(x)) = g(f(x)) for all x in /. In 1954 Eldon Dyer asked whether/and g must always have a common fixed point, meaning a point z in / for which f(z) = z=g(z). A. L. Shields posed the same question independently in 1955, as did Lester Dubins in 1956. The p...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2011
ISSN: 0022-2518
DOI: 10.1512/iumj.2011.60.4294